y=(8y^2-5y+7)-(2y^2+7y+11)

Simple and best practice solution for y=(8y^2-5y+7)-(2y^2+7y+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y=(8y^2-5y+7)-(2y^2+7y+11) equation:



y=(8y^2-5y+7)-(2y^2+7y+11)
We move all terms to the left:
y-((8y^2-5y+7)-(2y^2+7y+11))=0
We calculate terms in parentheses: -((8y^2-5y+7)-(2y^2+7y+11)), so:
(8y^2-5y+7)-(2y^2+7y+11)
We get rid of parentheses
8y^2-2y^2-5y-7y+7-11
We add all the numbers together, and all the variables
6y^2-12y-4
Back to the equation:
-(6y^2-12y-4)
We get rid of parentheses
-6y^2+y+12y+4=0
We add all the numbers together, and all the variables
-6y^2+13y+4=0
a = -6; b = 13; c = +4;
Δ = b2-4ac
Δ = 132-4·(-6)·4
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{265}}{2*-6}=\frac{-13-\sqrt{265}}{-12} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{265}}{2*-6}=\frac{-13+\sqrt{265}}{-12} $

See similar equations:

| (x+1)+7=360 | | (x-14)+(9x-4)=180 | | (x+14)+(9x-4)=18/ | | 0.50/2=1.50/x | | 0.5/2=1.50/x | | -27x+28x=41 | | 6m+8=5 | | 10x+50=15x+20 | | 0.2x-3=0.4 | | 14b+3b=135 | | p(.29)+2.59(8-p)=9.22 | | (4x-6)°=(8x-6)° | | 3(2x-15)=36 | | 3/5c=14 | | 15^2+b^2=32^2 | | 8x^2+7x-22=0 | | m/2-1=m/3+4 | | 9÷4=a | | 4x+7=7x+26 | | 8x-27+3x+58=90 | | 3y+y=360 | | 90=2w^2 | | 38=-5y+3(y+6) | | 4+y=52 | | -3v+4=8(v-5) | | 4x^2-48x-256=0 | | 11=0x | | 3x=16/2 | | 8+¼t=8 | | 5x+5÷x=26 | | 5y+9=3y+7 | | 5x+9=3+7 |

Equations solver categories